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Essential singularity in the X Y  spin-1 chain with uniaxial 
anisotropy 

R Jullien and P Pfeuty 
Laboratoire de Physique des Solidest, BBtiment 5 10, Universite Paris-Sud, Centre d'Orsay, 
91405 Orsay, France 

Received 27 February 1981 

Abstract. We have performed finite-cell calculations on the one-dimensional spin-1 X Y  
model with transverse anisotropy. Infinite size extrapolation of the results shows strong 
evidence for a transition at T = 0 by increasing the strength of the anisotropy with peculiar 
scaling properties characteristic of an essential singularity. Thus, this quantum chain, which 
is a simple truncated version of the quantum formulation of the classical 2d X Y  model, 
behaves very similarly to its classical analogue. 

1. Introduction 

There has been a growing interest in the theory of phase transitions in two dimensions 
since the discovery by Kosterlitz and Thouless (1973) of a 'line of fixed points' in the 
planar Heisenberg model (the O(2) model) in two dimensions. In such a model, the 
susceptibility diverges at a characteristic temperature as the temperature is lowered, 
remaining infinite in the whole low-temperature phase. The nature of the singularity 
near the Characteristic temperature is very peculiar: just above the critical point the 
coherence length is predicted to diverge more rapidly than any power law (Kosterlitz 
1974). This behaviour is characteristic of a so called 'essential singularity'. 

Recently an interesting quantum formulation of the O ( n )  model has been derived 
(Hamer and Kogut 1979, Kogut 1979). Using a continuous time, discrete spatial 
lattice, the d-dimensional classical model is shown to be equivalent to a (d-1)- 
dimensional quantum Hamiltonian of coupled rotators. Approximate methods on the 
quantum version of the O(2) model, such as strong coupling series expansions (Hamer 
and Kogut 1979) as well as very recent finite-cell scaling calculations (Hamer and 
Barber 1981) confirm the existence of a transition with an essential singularity. 

Here we are concerned by a very simple one-dimensional quantum Hamiltonian 
which can be interpreted as a truncatFd version (by retaining only the three lowest levels 
of each rotator) of the quantum forr'nulation of the O(2) model. This model consists in 
an X Y  spin-one chain with a uniaxial transverse anisotropy and is described by the 
following Hamiltonian 

2i?= -J c (sl"s;+l +Sys;+,)+D (sfy 
i i 

where S", Sy,  S' are usual spin-one Pauli matrices and where J and D ( D  > 0) represent 
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the strength of the XY coupling and the anisotropy, respectively. By considering the 
limiting cases x = D/J = 0 and x = D/J = CO in which the ground state of the system is 
respectively degenerate and non-degenerate, we expect a transition at T = 0 by 
increasing the strength of the anisotropy. By continuity from the D = 0 limiting case, 
we expect that in the low-D phase there is no spontaneous magnetisation (i.e. ( S ; )  = 0), 
as in the 2d O ( 2 )  model. It is, however, not obvious that the transition would occur at a 
non-zero xc = (D/J)c value and that the critical behaviour would be characteristic of an 
essential singularity since, due to the truncation, the Hamiltonian is not strictly 
equivalent to the O ( 2 )  model. 

Hamiltonian (1) has been already considered by Luther and Scalapino (1977) as a 
simple representation of the classical planar 2d model. However, their treatment which 
consists in replacing a spin-1 by two spins-: is doubtful, as confirmed to us by one of the 
authors (D Scalapino, private communication). Also, by considering this model as a 
truncated representation of a more complicated Hamiltonian of coupled spin-; chains 
we have done real-space renormalisation group calculations on Hamiltonian ( 1 )  and we 
were unable to recover the essential singularity (Jullien et a1 1979). 

In this paper, we present the results of finite-cell scaling calculations on Hamiltonian 
( 1 )  similar to those performed by Hamer and Barber (1980) on the more general 
coupled rotator Hamiltonian. From the present calculations there is strong evidence 
for an essential singularity, showing that the truncation in energy does not affect the 
general properties of the O ( 2 )  model. Thus, Hamiltonian (1) constitutes a very simple 
and very useful representation of the O(2) model. We, however, cannot study the 
precise form of the essential singularity and we cannot show that it is exactly the same as 
for the 2d X Y  model. 

2. Method 

Finite-cell scaling, as introduced by Fisher and Barber (1972),  asserts that in a finite 
system of size N the physical quantities follow the same scaling equations near the 
critical point as in the infinite system. For example, in the case of the gap G(D/J,  N )  
between the ground state and the first excited level, we set 

G - N-‘f(Nl’”Ax) ( 2 )  
where 

AX - D/J - (D/J)c  (3) 

and where f is a given (regular) scaling function. The exponent v appearing in (2) 
describes the divergence of the coherence length at the transition: 

5 -AX-” .  (4) 

The  exponent z defined by ( 2 )  is the ‘dynamical’ exponent which tells us how the gap 
scales with size at the critical point. For a quantum Hamiltonian derived directly from a 
classical model, t must be strictly equal to one since in the correspondence with the 
classical system, G-’ corresponds to the coherence length in the extra (time) dimen- 
sionality (Kogut 1979). Considering that, here, the Hamiltonian is not strictly 
equivalent to a classical system (due to the truncation in energy) the equality t = 1 must 
be checked. 
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In the following we will also consider the derivative of the gap with respect to the 
dimensionless parameter x = D/J. From (2), G’ obeys the scaling relation: 

It follows from (2) and ( 5 )  that the decay of GIG‘ with size at the transition (Ax = 0) is 
simply governed by the exponent 1/ v : 

( 6 )  G/ G’ - N-” ”. 

We have calculated G and G’ by diagonalising exactly Hamiltonian (1) for finite 
cells of N spins with periodic boundary conditions. The diagonalisation has been done 
in each subspace corresponding to integer values of X S f  ranging from -N to +N. In 
each subspace we have constructed the ground state iteratively by using the Lanczos 
method (Whitehead 1980) which appears to be really powerful for such finite-cell 
calculations (Roomany et a1 1980, Hamer and Barber 1981). We have observed that 
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Figure 1. Plot of ln(G/J) as a function of In N for different D / J  values. 
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the absolute ground state of the chain always corresponds to X S f  = 0, while the first 
excited states (a doublet) correspond to X S f  = * 1. We have been able to calculate the 
gap G(D/J,  N )  as well as its first derivative with respect to x = D/J, for any value of x 
and for N varying up to N = 7. The results are now analysed in the next section in view 
of the scaling equations (2) and (6). 

- 

3. Results 

In order to estimate the exponent z we have first plotted In G as a function of In N 
(figure 1) for several values of x = D/J. For ordinary phase transitions the relation must 
be asymptotically ( N  -$ CO) linear only for x = x,, the slope giving - 2  at the transition. 
Here we observe that the linearity is asymptotically verified, leading to z = 1, in an 
extended range of low D/J values from 0 up to D/J=O.4. This is already a first 
indication for a line of fixed points, but it does not allow us a precise evaluation of 

Assuming z = 1 ,  we have used equation (2) as in the phenomenological renor- 
malisation group (Nightingale 1976, Sneddon 1978). Comparing adjacent sizes N and 
N + 1 ,  we have determined the location of the transition xc by the implicit equation: 

(D/  J ) C .  

NG(x,, N )  = (N + l)G(x, ,  N + 1) (7) 

and v by linearising the RG equation at the fixed point: 

N NG'(xc, N )  v = ln -/In ( 
N + 1 (N  + l)G'(xc,  N + 1) 

In figures 2 and 3 we have reported the results as a plot of ( D / J ) ,  and l / v  respectively as 
a function of 1/N. Despite odd-even size oscillations, the critical value extrapolates 
quite well for N -$ CO to a non-zero value (D/J)c  = 0.4 while l / v  seems to converge to 
zero or to an extremely small value. This last result (v = CO) is a strong argument for an 
essential singularity at (DIJ),. 
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Figure 2. Results of the phenomenological renor- 
malisation group calculations when comparing sizes 
N and N +  1 :  plot of ( D / J ) ,  as a function of 1/N.  

Figure 3. Results of the phenomenological renor- 
malisation group calculations when comparing sizes 
N and N +  1: plot of 1 / v  as a function of 1/N. 
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In order to make this last point precise, in figure 4 we have reported In (G/G') as a 
function of In N for several x = D/J values. We again observe odd-even size oscil- 
lations in the low D/J phase. But let us focus on the asymptotic slope of the curves 
which can be reasonably estimated to be strictly zero in the whole range D/J 6 0.4, 
while the curve starts to deviate from this behaviour (and the oscillations disappear) for 
larger anisotrooies. Here also, we cannot deduce any precise value for (D/J)c .  
However, all these results are consistent with a transition at about (D/J )  = 0.4 with an 
essential singularity. Any further scaling analysis, in particular any attempt to extract 
the essential singularity index U (assuming 6- exp(b/Ax")) would be really doubtful. 

An interesting point is the existence of size oscillations for low D/J values which 
could be an indication for oscillating correlation functions in this low anisotropy phase, 
as in the low-field phase of the spin-; X Y  chain in a transverse field (Barouch and 
McCoy 1970). 
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Figure 4. Plot of In(G/G') as a function of In N for different D/J  values. 

4. Conclusion 

From finite-size scaling calculations we have presented strong evidence for a transition 
with an essential singularity in the spin-1 X Y  chain with anisotropy. This quantum 
model, which is an approximate representation of the 2d classical X Y  model, seems to 
behave as its classical analogue. The main conclusion from this calculation is that the 
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truncation in energy has no dramatic effect on the main properties. It would be 
interesting to extend these calculation to the other truncated representations of the 
O ( n )  models for n > 2 in two dimensions which consist of spin-?, spin-2 . . . chains. 
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